Abstract

AbstractIncident solar radiation at Earth’s surface, also called surface insolation, plays an important role in the Earth system as it affects surface energy balance, weather, climate, water supply, biochemical emissions, photochemical reactions, etc. The University of Alabama in Huntsville (UAH) and the NASA Short-term Prediction Research and Transition Center (SPoRT) have been generating and archiving several products, including insolation, from the Geostationary Operational Environmental Satellite (GOES) Imager for over a decade. The NASA/UAH insolation product has been used in studies to improve air quality simulations, biogenic emission estimates, correcting surface energy balance, and for cloud assimilation, but has not been thoroughly evaluated. In this study, the NASA/UAH insolation product is compared to surface pyranometer measurements from the Surface Radiation Budget Network (SURFRAD) and the U.S. Climate Reference Network (USCRN) for a 12-month period from March 2013 to February 2014. The insolation product has normalized bias values within 6% of the mean observation, a root-mean-square error between 6% and 16%, and correlation coefficients greater than 0.96 for hourly insolation estimates. It also shows better performance without the presence of clouds. However, erroneous estimates may be produced for persistent snow-covered surfaces. Further, this study attempts to demonstrate the use of such a satellite-based insolation product for model evaluation. The NASA/UAH insolation product is compared to the downward shortwave radiation from the Rapid Refresh, version 1 (RAPv1), and successfully captures the overestimation tendency in surface energy input as mentioned in previous studies. Finally, future plans for improving the retrieval algorithm and developing a GOES-16 insolation product are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call