Abstract
The advanced baseline imager (ABI) onboard Geostationary Operational Environmental Satellites-16 (GOES-16) provides high-quality visible and near-infrared (VNIR) imagery data. Radiometric performance of the GOES-16 ABI multiple VNIR bands (B1, B2, B3, B5, and B6) is evaluated over the Sonoran Desert by comparing measurements with Suomi National Polar-Orbiting Partnership (S-NPP) and NOAA-20 visible infrared imaging radiometer suite equivalent bands M3, M5, M7, M10, and M11, respectively. In order to minimize the uncertainties due to the difference in spectral response functions of similar bands from the different sensors, spectral band adjustment factor (SBAF) derived from Hyperion data over Sonoran Desert is used. The large viewing angle at the Sonoran Desert by ABI (56.34 deg) and a lack of comprehensive BRDF model at such viewing geometry are the main challenges for the comparison. Two schemes to address such challenges were developed. A data-derived (DD) method, based on confining the matched solar-zenith angle and view-zenith angle between ABI and VIIRS, interpolation in solar-zenithal and relative-azimuthal angles is developed to address this issue. It is shown that there is some residual bias for ABI B1 and its equivalent VIIRS M3 band, which is mainly due to unaccounted angular dependence of atmospheric scattering in this DD method. To address this issue, a radiative transfer modeling (RTM)-based method to account for atmospheric effects is developed to facilitate the comparison. The time series trending and mean bias of reflectance ratio between ABI and VIIRS measurements over the Sonoran Desert after SBAF and bidirectional reflectance distribution function corrections are derived to evaluate the radiometric performance of ABI with respect to net primary productivity and NOAA-20 VIIRS. The analysis shows that the radiometric biases of the five VNIR channels of GOES-16 ABI are all within 5% in comparison to the matched channels of NPP VIIRS after applying the RTM correction. The analysis also detects ∼6 % drop in the radiometric bias of GOES-16 ABI 0.64 μm channel after April 23, 2019, which can be traced to the implementation of a correction of the ABI B2 calibration coefficient around this date. Further, we evaluate the relative radiometric bias for the five VNIR channels between NPP and NOAA-20 VIIIRS using double difference method, and the comparison shows that NPP VIIRS has 2% to 3% higher bias than NOAA-20 VIIRS for these spectral bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.