Abstract

Four coupled atmosphere-ocean general circulation models were examined for the ability of their control runs to simulate present climate given present forcings. The area of study is mainly Cameroon and some of its surrounding areas (0–25° E, 5° S-30° N). These models are from the UK Meteorological Office Hadley Centre (HadCM2), the German Max-Planck-Institut fur Meteorologie (ECHAM4), the Canadian Centre for Climate Modelling and Analysis (CGCM1) and the Australian Commonwealth Science and Industrial Research Organisation (CSIRO-Mk2). The ability of the models to reproduce the observed spatial and temporal patterns was studied. ECHAM4 and HadCM2 were found to reproduce the spatial pattern well, with a correlation of more than 90%. They also simulated the main annual features of both temperature and rainfall. The CSIRO-Mk2 model was slightly less successful and the CGCM1 had the worst results for the area, especially as concern rainfall. In view of these results, ECHAM4 and HADCM2 were used to evaluate projected changes in rainfall and temperature resulting from increased concentration of greenhouse gases in the atmosphere for the 30 year period 2040 to 2070.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.