Abstract

The intricate tendon system of the human muscular-skeletal system contributes to the human hand’s dexterity. A complex bond graph model of the index finger was developed to give insight into this system. Previous validation of this model by use of the ACT hand was difficult due to static joint friction. A new robotic testbed, Utah’s Anatomically-correct Robotic Testbed (UART) finger, has been developed to mitigate this friction. Static force and position experiments were conducted with the UART finger in contact with a surface and were compared to the bond graph model. The results suggest that the model is capable of simultaneously predicting static poses and fingertip force. The average predicted joint angle error was 2.9°. The average fingertip force magnitude error was 7.4%, and the average fingertip force direction error was 4.3°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.