Abstract

To analyze the fetal fraction, fetal sex, and chromosomal aneuploidy in multiple pregnancies using noninvasive prenatal testing (NIPT). A total of 362 pregnant women including 203 singleton pregnancies, 69 twins, and 90 higher-order multiple pregnancies were recruited. Fetal fractions estimated by size ratio-based and Y chromosome-based approaches in singleton pregnancies with male fetus were used as source data to establish the model. The model was then applied to multiple pregnancies for fetal fraction estimation. By comparing the fetal fractions estimated by size ratio to those estimated by Y chromosome or autosomal chromosomes, fetal sex and chromosomal aneuploidy can be analyzed. The size ratio-based approach has been well established in estimating fetal fractions for twin and higher-order multiple pregnancies. Fetal fraction had a positive correlation with gestational age in twin and triplet pregnancies. Fetal sex was determined with accuracies of 98.6% (95% CI, 92.19%-99.96%) in twins and 97.6% (95% CI, 91.76%-99.71%) in triplet pregnancies. Four trisomy 21, one trisomy 18, and one trisomy 13 cases were detected by NIPT. Two trisomy 21 singleton pregnancies and one trisomy 21 twin pregnancy were confirmed by karyotyping. Fetal sex and chromosomal aneuploidy in multiple pregnancies can be determined using NIPT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call