Abstract

Fire dynamics simulator (FDS) has been applied to simulate a medium-scale methanol pool fire. The simulation used predominantly the existing features in FDS except that an additional sub-grid-scale combustion model based on the laminar flamelet approach of Cook AW and Riley JJ [Combust and Flame 1998;112:593–606] was used alongside the default mixture fraction combustion model for comparison. The predictions of the two different combustion models for temperature and axial velocity distributions were found to be in reasonably good agreement with each other and the experimental data. The pulsating nature of air entrainment was demonstrated by the air entrainment velocity fluctuations and the instantaneous velocity vectors, which revealed formation and shedding of vortices and the well-known “neck-in” at a distance of approximately one diameter from the pool surface. The predicted variations of air entrainment at different heights agreed well with some published data and correlation. Although the limitation of the code in predicting the puffing frequency was noticed as the spectra of temperature fluctuations failed to demonstrate any dominant frequency, the present study has demonstrated the capability of FDS to deliver reliable predictions on most important parameters of pool fires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.