Abstract
This work intends to showcase a validation of the applicability of Extended Elastic Impedance (EEI) inversion method in reservoir characterization and modeling. In order to achieve that, deterministic seismic inversion and extended elastic impedance (EEI) analysis were applied to obtain quantitative estimates of reservoir properties over the Pu field of the West African Congo basin. Optimum EEI angles corresponding to the reservoir properties were then analyzed using well logs data, together with a lithology indicator. Pre-stack seismic data were simultaneously inverted into density, acoustic and gradient impedances cubes, through model based inversion algorithm. The last two broadband inverted volumes were then projected to corresponding Chi angles proportionate to petrophysical indicators, thus resulting to two broadband EEI volumes. At well locations, the EEI versus petrophysical parameters linear trends were then applied to convert EEI volumes into porosity and shale volumes based on specified lithology. In order to generate reservoir facies distribution, minimum angle was applied based on background EEI, thus allowing for mapping of reservoir facies. In order to validate the EEI approach, a Geo-statistical model was further developed for the same field. Hence, from porosity, shale content and background EEI cubes, a comparison was made between the properties generated from the EEI and that generated based on geo-statistical method, which shows that EEI is a robust way of reservoir characterization that pinpointing favorable reservoir potentials which shall guide future drilling locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.