Abstract

Abstract Safety and integrity assessments of pressure boundary components require reliable knowledge of the material property values and the validated experimental and computational analysis methods. To improve the accuracy and validity of the experimental and computational fracture assessment methods, a four year Nordic research programme under the auspices of the Nordic Liaison Committee of Atomic Energy was initiated in 1985 and is now under completion. The main technical objective of the programme was to clarify how catastrophic failure can be prevented in pressure vessels and pipings. Experiments with small fracture mechanics specimens and pressure vessels were performed to validate the computational fracture assessment analysis. Two tests were conducted on a decommissioned full-scale chemical reactor pressure vessel from an oil refinery plant, and were extensively instrumented, e.g. by utilizing a 64-channel acoustic emission monitoring system. The scattering of their material property values were determined by numerous fracture mechanics samples. In addition, as a part of the experimental work, the reactor pressure vessel was repaired by welding after the first test. The repair was carried out without postweld heat treatment and welding was done by applying the temper-bead technique. Residual stresses were measured during and after welding. Different fracture assessment methods were developed and subsequently applied to the tested components. Inter-laboratory round robin programmes with the participation of several laboratories were arranged to examine elastic-plastic finite element calculations and fracture mechanics testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.