Abstract

The echocardiographic measurement of left ventricular (LV) ejection fraction (EF) is dependent on professional experience and adequate visualization. Tissue motion of mitral annular displacement (TMAD) can be easily assessed using speckle-tracking echocardiography (STE), even in patients with poor acoustic windows. Therefore, this study aimed to assess whether left ventricular ejection fraction (LVEF) can be estimated using STE-derived TMAD when LVEF is not available. Four-hundred fifty-six outpatients were enrolled after excluding the patients whose LVEF measurements remained challenging or TMAD value could be confounded. An optimized regression model for LVEF-TMAD was developed in the derivation set (n=287), and its reliability was verified in the validation set (n=123) and regional wall motion abnormalities (RWMA) set (n=46). In the derivation set, the power models had the highest F-value. Therefore, the power equations were chosen to estimate LVEF by TMAD in the validation set. There was a near-zero bias and a narrow range between the observed and estimated LVEF. The highest intra-class correlation coefficient was found between the observed and the estimated LVEF by normalized TMAD at the midpoint of mitral annular (nTMADmid). Moreover, there were no significant differences between the observed and the estimated LVEF in the RWMA set. The LVEF can be estimated with STE-derived TMAD, even for patients with RWMA, and nTMADmid may be the optimal parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call