Abstract

The varistor is an electronic component that protects the DC motor’s circuitry from electrical noise or transients that can cause damage. It works as a voltage-dependent resistor that can change its resistance according to the applied voltage. Once the voltage surpasses a specific threshold, the varistor conducts and directs the excess voltage away from the motor’s circuitry. In small DC motor manufacturing, ring varistors are vital for reducing electrical noise, minimizing spark-induced damage to the commutator and brush, and extending the motor’s lifespan. Additionally, they prevent damage to electronic parts in the customer’s mechanism set. The objective of this study is to investigate the impact of varistor cracks or chips that may occur during the soldering process of varistors to the commutator. To confirm the occurrence of cracks or chips, intentional damage will be inflicted on the varistors. The study aims to determine how the presence of cracked or chipped varistors affects the electrical noise produced by a DC motor during its operation. The resulting spark was observed through an oscilloscope, and it was found that the effect could be substantial, up to 5 to 10 times the rated voltage supplied to the motor. In the next phase of this study, further tests will be conducted on motors without varistors to provide a comparison.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call