Abstract

Abstract One of the most widely used systems for wind speed and direction observations at meteorological sites is based on Doppler wind lidar (DWL) technology. The wind vector derivation strategies of these instruments rely on the assumption of stationary and homogeneous horizontal wind, which is often not the case over heterogeneous terrain. This study focuses on the validation of two DWL systems, operated by the German Weather Service [Deutscher Wetterdienst (DWD)] and installed at the boundary layer field site Falkenberg (Lindenberg, Germany), with respect to measurements from a small, fixed-wing uncrewed aircraft system (UAS) of the type Multi-Purpose Airborne Sensor Carrier (MASC-3). A wind vector intercomparison at an altitude range from 100 to 500 m between DWL and UAS is performed, after a quality control of the aircraft’s data accuracy against a cup anemometer and wind vane mounted on a meteorological mast also operating at the location. Both DWL systems exhibit an overall root-mean-square difference in the wind vector retrieval of less than 22% for wind speed and lower than 18° for wind direction. The enhancement or deterioration of these statistics is analyzed with respect to scanning height and atmospheric stability. The limitations of this type of validation approach are highlighted and accounted for in the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.