Abstract

BackgroundSeveral respiratory diseases are associated with specific respiratory sounds. In contrast to auscultation, computerized lung sound analysis is objective and can be performed continuously over an extended period. Moreover, audio recordings can be stored. Computerized lung sounds have rarely been assessed in neonates during the first year of life. This study was designed to determine and validate optimal cut-off values for computerized wheeze detection, based on the assessment by trained clinicians of stored records of lung sounds, in infants aged <1 year.MethodsLung sounds in 120 sleeping infants, of median (interquartile range) postmenstrual age of 51 (44.5–67.5) weeks, were recorded on 144 test occasions by an automatic wheeze detection device (PulmoTrack®). The records were retrospectively evaluated by three trained clinicians blinded to the results. Optimal cut-off values for the automatically determined relative durations of inspiratory and expiratory wheezing were determined by receiver operating curve analysis, and sensitivity and specificity were calculated.ResultsThe optimal cut-off values for the automatically detected durations of inspiratory and expiratory wheezing were 2% and 3%, respectively. These cutoffs had a sensitivity and specificity of 85.7% and 80.7%, respectively, for inspiratory wheezing and 84.6% and 82.5%, respectively, for expiratory wheezing. Inter-observer reliability among the experts was moderate, with a Fleiss’ Kappa (95% confidence interval) of 0.59 (0.57-0.62) for inspiratory and 0.54 (0.52 - 0.57) for expiratory wheezing.ConclusionComputerized wheeze detection is feasible during the first year of life. This method is more objective and can be more readily standardized than subjective auscultation, providing quantitative and noninvasive information about the extent of wheezing.

Highlights

  • Several respiratory diseases are associated with specific respiratory sounds

  • Parents often differ in their understanding of wheeze [14,15] and parentally reported wheezing often cannot be confirmed by auscultation [16]

  • Computerized lung sound analysis, especially computerized wheeze detection, has been reported to be a more objective and standardizable method, which can overcome the limitations of subjective auscultation [3,9,21,22]

Read more

Summary

Introduction

Several respiratory diseases are associated with specific respiratory sounds. In contrast to auscultation, computerized lung sound analysis is objective and can be performed continuously over an extended period. This study was designed to determine and validate optimal cut-off values for computerized wheeze detection, based on the assessment by trained clinicians of stored records of lung sounds, in infants aged

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.