Abstract

Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to their high effluent quality. One of the main problems with such systems is a relative large energy consumption, compared to conventional activated sludge (CAS) systems, which has led to further research in this specific area. A powerful tool for optimizing MBR-systems is computational fluid dynamics (CFD) modelling, which gives researchers the ability to describe the flow in the systems. A parameter which is often neglected in such models is the non-Newtonian properties of active sludge, which is of great importance for MBR systems since they operate at sludge concentrations up to a factor of 10 compared to CAS systems, resulting in strongly shear thinning liquids. A CFD-model is validated against measurements conducted in a system with rotating cross-flow membranes submerged in non-Newtonian liquids, where tangential velocities are measured with a Laser Doppler Anemometer (LDA). The CFD model is found to be capable of modelling the correct velocities in a range of setups, making CFD models a powerful tool for optimization of MBR systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.