Abstract
To validate a method for determination of cardiac index (CI) using real-time measurement of oxygen consumption (VO2 ) in young children undergoing cardiac catheterization. Retrospective review comparing thermodilution cardiac index (TDCI) to CI calculated by the Fick equation using real-time measured VO2 (RT-VO2 ) and VO2 derived from 2 published predictive equations. Paired t-test and Bland-Altman analysis were used to compare TDCI to Fick CI. A survey to ascertain pediatric cardiac catheterization practices regarding VO2 determination was also conducted. Quaternary care children's hospital cardiac catheterization laboratory. Children <3 years old with structurally normal hearts undergoing cardiac catheterization under general anesthesia with at least one set of contemporaneous TDCI and RT-VO2 measurements. Thirty-six paired measurements of TDCI and RT-VO2 were made in 27 patients over a 2-year period. Indications for catheterization included congenital diaphragmatic hernia postrepair (n = 13), heart disease post-orthotopic heart transplant (n = 13), and suspected cardiomyopathy (n = 1). Mean age was 21.5 ± 8 months; median weight was 9.9 kg (IQR 8.57, 12.2). RT-VO2 was higher than VO2 predicted by the LaFarge equation (190 ± 31 vs. 173.8 ± 12.8 mL/min/m(2), P < .001), but there was no difference between TDCI and Fick CI calculated using VO2 from any method. Bland-Altman analysis showed excellent agreement between TDCI and Fick CI using RT-VO2 and VO2 predicted by the Lundell equation; Fick CI using VO2 predicted by the LaFarge equation showed fair agreement with TDCI. In children <3 years with a structurally normal heart, RT-VO2 generates highly accurate determinations of Fick CI as compared with TDCI. Additionally, in this population, VO2 derived from the LaFarge and Lundell equations generates accurate Fick CI compared with TDCI. Future studies are needed to identify factors associated with inaccurate VO2 generated from these predictive equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.