Abstract
A recently developed vertical borehole ground heat exchanger model that accounts for transit time effects and time-varying short-circuiting heat transfer has been validated against two multi-flow-rate thermal response tests (MFR-TRT). The MFR-TRT, when performed with a wide range of flow rates, results in significant changes in the borehole thermal resistance, the borehole internal thermal resistance, and the short-circuiting heat transfer between the two legs of a single U-tube. The model accounts for short-circuiting by an analytically computed weighting factor that is used to determine the mean fluid temperature. The weighting factor portion of the model can be readily utilized in other ground heat exchanger models that currently rely on a simple mean fluid temperature. Use of the weighting factor is shown to give significantly better estimations of entering and exiting fluid temperature than using the simple mean fluid temperature. The new model is also compared to an alternative approach − using an effective borehole thermal resistance. While both the effective borehole thermal resistance model and the weighting factor give quite good results a few hours after a step change in flow rate, the weighting factor model gives much better results in the first few hours after a step change in flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.