Abstract

Sediment toxicity assessments using caged organisms present advantages over using laboratory and native community studies. The use of caged Arenicola marina in sediment toxicity assessments was evaluated. Lugworms were exposed in situ to sediments from coastal and port areas in Spain for seven days, and the activities of the biotransformation enzymes ethoxyresorufin O-deethylase, dibenzylfluorescein dealkylase and glutathione S-transferase, the activities of the antioxidant enzymes glutathione reductase and glutathione peroxidase and lipid peroxidation were then analyzed as biomarkers. Biomarker results and sediment physicochemical data were integrated. Cádiz Bay (SW Spain) sediments presented metal contamination that was not linked to a biochemical response. In LPGC Port (SW Spain), Pb contamination exhibited a moderate toxic potential, while PAHs, and presumably pharmaceuticals, provoked biochemical responses that efficiently prevented lipid peroxidation. In Santander Bay (N Spain), exposure to PAHs and, presumably, pharmaceuticals induced biomarker responses, but lipid peroxidation occurred nevertheless. These results indicated that caged A. marina were effective for the assessment of sediment quality and that the selected biomarkers were sufficiently sensitive to identify chemical exposure and toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call