Abstract

Ultrasound has potential for use in evaluation of bone and joint movement during axial twist of the lumbar spine both in vivo and in vitro. Such segmental rotations could then be measured under controlled external thoracic axial twist conditions and in response to mechanical loading. The purpose of this study was to measure vertebral segmental rotations in a porcine model of the human lumbar spine using an ultrasound imaging protocol and to validate use of this imaging technique with an optical motion capture system. In part 1, ultrasound transducer angle was confirmed to have no effect on sonogram point digitization. In part 2, 12 porcine functional spinal units were fixed to a mechanical testing system, and compression (15% of compressive tolerance), flexion–extension and axial twist (0°, 2°, 4° or 6°) were applied. Axial twist motion was tracked using an optical motion capture system and posterior surface ultrasound. Correlation between the two measurement systems was >0.903, and absolute system error was 0.01° across all flexion–extension postures. These findings indicate that ultrasound can be used to track axial twist motion in an in vitro spine motion segment and has the potential for use in vivo to evaluate absolute intervertebral axial twist motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.