Abstract

Numerous soft and continuum robotic manipulators have demonstrated their potential for compliant operation in highly unstructured environments or near people. Despite their recent popularity, modeling of their smooth bending deformation remains a challenge. For soft continuum manipulators, the widespread, constant curvature approach to modeling is inadequate for modeling some deformations that occur in practice, such as combined bending and twisting deformations. In this paper, we extend the classical Cosserat rod approach to model a variable-length, pneumatic soft continuum arm. We model the deformation of a pneumatically driven soft continuum manipulator, and the model is then compared against experimental data collected from a three degree of freedom, pneumatically actuated, soft continuum manipulator. The model shows good agreement in capturing the overall behavior of the bending deformation, with mean Euclidean error at the tip of the robot of 2.48 cm for a 22 cm long robot. In addition, the model shows good numerical stability for simulating long duration computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.