Abstract
BackgroundWhile cough is an important defence mechanism of the respiratory system, its chronic presence is bothersome and may indicate the presence of a serious disease. We hereby describe the validation process of a novel cough detection and counting technology (PulmoTrack-CC™, KarmelSonix, Haifa, Israel).MethodsTracheal and chest wall sounds, ambient sounds and chest motion were digitally recorded, using the PulmoTrack® hardware, from healthy volunteers coughing voluntarily while (a) laying supine, (b) sitting, (c) sitting with strong ambient noise, (d) walking, and (e) climbing stairs, a total of 25 minutes per subject. The cough monitoring algorithm was applied to the recorded data to detect and count coughs.The detection algorithm first searches for cough 'candidates' by identifying loud sounds with a cough pattern, followed by a secondary verification process based on detection of specific characteristics of cough. The recorded data were independently and blindly evaluated by trained experts who listened to the sounds and visually reviewed them on a sonogram display.The validation process was based on two methods: (i) Referring to an expert consensus as gold standard, and comparing each cough detected by the algorithm to the expert marking, we marked True and False, positive and negative detections.These values were used to evaluate the specificity and sensitivity of the cough monitoring system. (ii) Counting the number of coughs in longer segments (t = 60 sec, n = 300) and plotting the cough count vs. the corresponding experts' count whereby the linear regression equation, the regression coefficient (R2) and the joint-distribution density Bland-Altman plots could be determined.ResultsData were recorded from 12 volunteers undergoing the complete protocol. The overall Specificity for cough events was 94% and the Sensitivity was 96%, with similar values found for all conditions, except for the stair climbing stage where the Specificity was 87% with Sensitivity of 97%. The regression equation between the PulmoTrack-CC™ cough event counts and the Experts' determination was with R2 of 0.94.DiscussionThis validation scheme provides an objective and quantitative assessment method of a cough counting algorithm in a range of realistic situations that simulate ambulatory monitoring of cough. The ability to detect voluntary coughs under acoustically challenging ambient conditions may represent a useful step towards a clinically applicable automatic cough detector.
Highlights
While cough is an important defence mechanism of the respiratory system, its chronic presence is bothersome and may indicate the presence of a serious disease
The overall Specificity for cough events was 94% and the Sensitivity was 96%, with similar values found for all conditions, except for the stair climbing stage where the Specificity was 87% with Sensitivity of 97%
The regression equation between the PulmoTrack-CCTM cough event counts and the Experts' determination was with R2 of 0.94
Summary
While cough is an important defence mechanism of the respiratory system, its chronic presence is bothersome and may indicate the presence of a serious disease. We hereby describe the validation process of a novel cough detection and counting technology (PulmoTrack-CCTM, KarmelSonix, Haifa, Israel). Cough is an important defence mechanism that helps clear secretions and air-bourn particles from the central airways [1]. A cough is a three-component respiratory Study phase Supine. While a recording of music, coughs and speech is played in high volume in the background Walking. 2 minutes with no cough 1 minute with 2-5 coughs events 1 minute with 5-8 coughs events 1 minute with weak and strong coughs followed by 3 throat clearings and speech from the patient
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.