Abstract

A non-steady-state flux chamber with recirculation airflow was constructed and coupled with a portable photoacoustic multi-gas analyzer to determine ammonia emissions from dairy manure. The objective of this work was to validate this flux chamber system by performing a comparison between the flux chamber emission rates and whole-building emission rates calculated from an ammonia balance in a mechanically ventilated experimental test room. It was found that flux chamber emission estimates were greatly improved with the addition of internal air recirculation to provide air velocity over the enclosed manure surface. Validation tests of the recirculation flux chamber showed a 9% to 37% underestimation of the emissions calculated from the ammonia balance (R2 = 0.72). The non-steady-state, recirculation flux chamber method can be used to estimate ammonia emissions in naturally ventilated buildings with an accuracy comparable to other available methods. However, the validation tests showed high variability in the results, which is thought to be associated with the different consistency of the manure used in the experiments and the airflow dynamics over the enclosed manure surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.