Abstract

Recently, anti-HIV treatment has achieved high efficacy and tolerability. Nevertheless, few data are available about the intracellular penetration of antiretrovirals, partly due to the technical challenges related to intracellular quantification. This work aimed to validate an ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the simultaneous quantification of maraviroc, nevirapine, rilpivirine, dolutegravir, raltegravir, cobicistat, darunavir, ritonavir, atazanavir, efavirenz, elvitegravir, and etravirine within peripheral blood mononuclear cells (PBMCs) and apply it to samples from patients. PBMCs were isolated by density gradient on cell preparation tubes (CPT). Samples were prepared by addition of internal standards (IS), sonication, centrifugation, and drying. Reconstituted extracts underwent chromatographic separation by reversed phase UHPLC and detection was performed by electrospray ionization and multiple reaction monitoring. Method validation followed FDA and EMA guidelines, showing acceptable accuracy, precision, recovery and IS-normalized matrix effect. The application to 56 samples from patients undergoing antiretroviral treatment provided description of intracellular penetration, showing method eligibility for future studies.

Highlights

  • Nowadays, combination antiretroviral therapy, consisting of the combination treatment with several antiretroviral drugs (ARVs) from at least two different ARV classes, has considerably improved tolerability, efficacy, and genetic barrier to resistance, greatly increasing life expectancy in people living with HIV (PLWH) [1]

  • A robust, practical, and relatively economical approach has been described for the quantification of all the current and frequently used ARVs within peripheral blood mononuclear cells (PBMCs)

  • Covers theoretically more than 3 × 105 samples). This approach, from sampling, isolation, counting, and final analysis, has the great advantage of obtaining results expressed as concentration, being comparable with those from plasma

Read more

Summary

Introduction

Combination antiretroviral therapy (cART), consisting of the combination treatment with several antiretroviral drugs (ARVs) from at least two different ARV classes, has considerably improved tolerability, efficacy, and genetic barrier to resistance, greatly increasing life expectancy in people living with HIV (PLWH) [1]. Despite the current effectiveness of cART in suppressing HIV viral load, HIV infection remains a chronic condition, due to latency and residual replication of the provirus in viral reservoirs [8,9,10,11,12,13,14]. These include lymphoid tissues, lymph nodes, the central nervous system and latent infected lymphocytes and monocytes [9,10,14,15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call