Abstract

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium, which was originally isolated from the interior of sugarcane plants. The genome of strain PAL5 of G. diazotrophicus has been completely sequenced and a next step is the functional characterization of its genes. The aim of this study was to establish an efficient mutagenesis method, using the commercial Tn5 transposon EZ::Tn5<KAN-2>Tnp Transposome (Epicentre). Up to 1 x 10(6) mutants per microgram of transposome were generated in a single electroporation experiment. Insertion-site flanking sequences were amplified by inverse PCR and sequenced for 31 mutants. For ten of these mutants, both insertion flanks could be identified, confirming the 9 bp duplication that is typical for Tn5 transposition. Insertions occurred in a random fashion and were genetically stable for at least 50 generations. One mutant had an insertion in a homolog of the flagellar gene flgA, and was therefore predicted to be affected in flagella-dependent traits and used to validate the applied mutagenesis methodology. This mutant lacked flagella and was non-motile on soft agar. Interestingly, it was also strongly affected in the ability to form biofilm on glass wool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.