Abstract

Porosity as one of the key properties of sediment mixtures is poorly understood. Most of the existing porosity predictors based upon grain size characteristics have been unable to produce satisfying results for fluvial sediment porosity, due to the lack of consideration of other porosity-controlling factors like grain shape and depositional condition. Considering this, a stochastic digital packing algorithm was applied in this work, which provides an innovative way to pack particles of arbitrary shapes and sizes based on digitization of both particles and packing space. The purpose was to test the applicability of this packing algorithm in predicting fluvial sediment porosity by comparing its predictions with outcomes obtained from laboratory measurements. Laboratory samples examined were two natural fluvial sediments from the Rhine River and Kall River (Germany), and commercial glass beads (spheres). All samples were artificially combined into seven grain size distributions: four unimodal distributions and three bimodal distributions. Our study demonstrates that apart from grain size, grain shape also has a clear impact on porosity. The stochastic digital packing algorithm successfully reproduced the measured variations in porosity for the three different particle sources. However, the packing algorithm systematically overpredicted the porosity measured in random dense packing conditions, mainly because the random motion of particles during settling introduced unwanted kinematic sorting and shape effects. The results suggest that the packing algorithm produces loose packing structures, and is useful for trend analysis of packing porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call