Abstract

BackgroundMinimizing the number of muscle biopsies has important methodological implications and minimizes subject discomfort during a stable isotope amino acid infusion. We aimed to determine the reliability of obtaining a single muscle biopsy for the calculation of muscle protein fractional synthetic rate (FSR) as well as the amount of incorporation time necessary to obtain that biopsy after initiating a stable isotope infusion (Study 1). The calculation of muscle protein FSR requires tracer steady-state during the stable isotope infusion. Therefore, a second aim was to examine if steady-state conditions are compromised in the precursor pools (plasma free or muscle intracellular [IC]) after ingestion of a tracer enriched protein drink and after resistance exercise (Study 2).MethodsSixteen men (23 ± 3 years; BMI = 23.8 ± 2.2 kg/m2, means ± SD) were randomized to perform Study 1 or Study 2 (n = 8, per study). Subjects received a primed, constant infusion of L-[ring-13C6]phenylalanine coupled with muscle biopsies of the vastus lateralis to measure rates of myofibrillar protein synthesis (MPS). Subjects in Study 2 were fed 25 g of whey protein immediately after an acute bout of unilateral resistance exercise.ResultsThere was no difference (P = 0.3) in rates of MPS determined using the steady-state precursor-product equation and determination of tracer incorporation between sequential biopsies 150 min apart or using plasma protein as the baseline enrichment, provided the infusion length was sufficient (230 ± 0.3 min). We also found that adding a modest amount of tracer (4% enriched), calculated based on the measured phenylalanine content of the protein (3.5%) in the drink, did not compromise steady-state conditions (slope of the enrichment curve not different from zero) in the plasma free or, more importantly, the IC pool (both P > 0.05).ConclusionsThese data demonstrate that the single biopsy approach yields comparable rates of muscle protein synthesis, provided a longer incorporation time is utilized, to that seen with a traditional two biopsy approach. In addition, we demonstrate that enriching protein-containing drinks with tracer does not disturb isotopic steady-state and thus both are reliable techniques to determine rates of MPS in humans.

Highlights

  • IntroductionSmith and colleagues [3] have recently reported on the validity of an approach that used one muscle biopsy instead of the traditional sequential biopsy technique to determine the fractional synthetic rate (FSR) of muscle protein in human volunteers

  • A common approach to quantify rates of skeletal muscle protein synthesis is to administer a primed continuous intravenous infusion of an isotopically labelled tracer amino acid with sequential muscle biopsies to determine the tracer incorporated into the product (e.g., muscleSmith and colleagues [3] have recently reported on the validity of an approach that used one muscle biopsy instead of the traditional sequential biopsy technique to determine the fractional synthetic rate (FSR) of muscle protein in human volunteers

  • Plasma and muscle intracellular free phenylalanine enrichment Linear regression analysis revealed that the slopes of the plasma free enrichments over time curve were not significantly different from zero (P = 0.30)

Read more

Summary

Introduction

Smith and colleagues [3] have recently reported on the validity of an approach that used one muscle biopsy instead of the traditional sequential biopsy technique to determine the fractional synthetic rate (FSR) of muscle protein in human volunteers These authors concluded that a single biopsy led to unreliable rates of muscle protein synthesis [3]. We aimed to determine the reliability of obtaining a single muscle biopsy for the calculation of muscle protein fractional synthetic rate (FSR) as well as the amount of incorporation time necessary to obtain that biopsy after initiating a stable isotope infusion (Study 1). Subjects in Study 2 were fed 25 g of whey protein immediately after an acute bout of unilateral resistance exercise

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.