Abstract

β-Lactam antibiotics are the most commonly used drugs on dairy farms. β-Lactam residues in milk are kept out of the human milk supply with good agricultural practices and mandatory truck screening performed by the dairy industry under Appendix N of the Pasteurized Milk Ordinance. Flunixin, a nonsteroidal and anti-inflammatory drug, appears in dairy cattle tissue residues with a frequency similar to the occurrence of penicillin G. This creates concern that flunixin residues could be in milk and would go undetected under current milk screening programs. A single test that combines mandatory β-lactam screening with voluntary flunixin screening is an economical approach for monitoring and controlling for potential flunixin or 5-hydroxyflunixin, the primary flunixin metabolite marker in milk. The objective of this study was to validate a β-lactam and flunixin rapid lateral flow test (LFT) and compare the results obtained with a liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of flunixin and 5-hydroxyflunixin in raw milk with a limit of detection of , 1 ppb, equivalent to 1 ng/ml. Using the LFT, three combined manufactured lots of test strips detected penicillin G at 2.0 ppb, ampicillin at 6.8 ppb, amoxicillin at 5.9 ppb, cephapirin at 13.4 ppb, ceftiofur (total metabolites) at 63 ppb, and 5-hydroxyflunixin at 1.9 ppb at least 90% of the time with 95% confidence. The LFT also detected incurred flunixin milk samples that were analyzed with the LC-MS/MS and diluted to tolerance in raw milk. The detection levels for the LFT are lower than the U.S. safe levels or tolerances and qualify the test to be used in compliance with U.S. milk screening programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call