Abstract

Although linear theory is often used to analyse wave energy devices, it is in many cases too simplistic. Many wave energy converters (WECs) exceed the key linear theory assumption of small amplitudes of motion, and require the inclusion of non-linear forces. A common approach is to use a hybrid frequency-time domain model based on the Cummins equation with hydro-dynamic inputs coming from linear wave theory (Ref. [1]). Published experimental data is sparse (Ref. [2]) and the suitability for the broad variety of WEC technologies has yet to be proven. This paper focuses on the challenges faced when attempting to validate a numerical model of a WEC using a variety of scaled physical tests in a waveflume. The technology used as a case study in this paper is a pitching WEC in close proximity to a fixed structure. Challenges are presented relating to waveflume effects and obtaining accurate physical input parameters to the numerical model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.