Abstract

With the widespread use of coronavirus disease 2019 (COVID-19) vaccines, a rapid and reliable method to detect SARS-CoV-2 neutralizing antibodies (NAbs) is extremely important for monitoring vaccine effectiveness and immunity in the population. The purpose of this study was to evaluate the performance of the RapiRead™ reader and the TestNOW™ COVID-19 NAb rapid point-of-care (POC) test for quantitative measurement of antibodies against the spike protein receptor-binding domain of severe respiratory syndrome coronavirus 2 (SARS-CoV-2) in different biological matrices compared to chemiluminescence immunoassay (CLIA) methods. Ninety-four samples were collected and analyzed using a RapiRead™ reader and TestNOW™ COVID-19 NAb kits for detecting neutralizing antibodies, and then using two CLIAs. The data were compared statistically using the Kruskal-Wallis test for more than two groups or the Mann-Whitney test for two groups. Specificity and sensitivity were evaluated using a receiver operating characteristic (ROC) curve. Good correlation was observed between the rapid lateral flow immunoassay (LFIA) test system and both CLIA methods. RapiRead™ reader/TestNOW™ COVID-19 NAb vs. Maglumi: correlation coefficient (r) = 0.728 for all patients; r = 0.841 for vaccinated patients. RapiRead™ reader/TestNOW™ COVID-19 NAb vs. Mindray: r = 0.6394 in all patients; r = 0.8724 in vaccinated patients. The time stability of the POC serological test was also assessed considering two times of reading, 12 and 14 minutes. The data revealed no significant differences. The use of a RapiRead™ reader and TestNOW™ COVID-19 NAb assay is a quantitative, rapid, and valid method for detecting SARS-CoV-2 neutralizing antibodies and could be a useful tool for screening studies of SARS-CoV-2 infection and assessing the efficacy of vaccines in a non-laboratory context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.