Abstract

The two kinematic axes of the tibiofemoral joint, the flexion-extension (F-E) and longitudinal rotation (LR) axes [1], are unrelated to the anatomic landmarks often used to align prostheses during total knee arthroplasty (TKA) [1, 2]. As a result, conventional TKA changes the position and orientation of the joint line, thus changing the position and orientation of the F-E and LR axes and consequently the kinematics of the knee. However, the extent to which TKA changes these axes is unknown. An instrument that can measure the locations of and any changes to these axes is an instrumented spatial linkage (ISL), a series of six instrumented revolute joints that can measure the six degrees of freedom of motion (DOF) between two rigid bodies without constraining motion. Previously, we computationally determined how best to design and use an ISL such that rotational and translational errors in locating the F-E and LR axes were minimized [3]. However, this ISL was not constructed and therefore its ability to measure changes in the axes has not been validated. Therefore the objective was to construct the ISL and quantify the errors in measuring changes in position and orientation of the F-E axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call