Abstract

ABSTRACT The performance characteristics of a multi-analyte method for the determination of all 10 carotenoids authorised as feed additives within the EU were assessed via an interlaboratory study. The analytical method is based on reversed phase high performance liquid chromatography (RP-HPLC) coupled to an optical detector set at 410 nm. The analysis is particularly challenging due to the presence of various stereoisomers of each carotenoid, and the use of these compounds via natural or synthetic formulations, requiring a special sample preparation. EU regulations specifying the conditions of use set legal limits for these substances in compound feedingstuffs ranging from 6 mg kg−1 to 138 mg kg−1, depending on the individual carotenoid and the target animal for which the feed is supplemented with this carotenoid. The purpose of the multi-analyte method validated in this paper is to facilitate the monitoring of carotenoids at relevant levels when used as feed additives in compound feedingstuffs and pre-mixtures. The interlaboratory study delivered precision data for 43 different analyte/mass fraction/matrix combinations, covering a mass fraction range of the target analytes from 2.6 mg kg−1 to 3861 mg kg−1. The relative standard deviations for repeatability (RSDr) varied from 2.2 to 16.2 % with a mean value of 6 %, while the relative standard deviations for reproducibility (RSDR) varied from 6.8 to 39 % with a mean value of 21 %. Given the broad scope of the method covering 10 carotenoids added to compound feedingstuffs and pre-mixtures via different formulations, this multi-analyte method is considered fit for the intended purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.