Abstract

BackgroundPre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential.ResultsHere, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation.ConclusionsWe demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

Highlights

  • Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms

  • The non-obese diabetic/severe combined immunodeficient (NOD/SCID) xenograft mouse model is currently one of the most successful models with which to study haematological malignancies such as acute lymphoblastic leukaemia (ALL) [1], whereby patient bone marrow leukaemia cells are directly transplanted into recipient NOD/SCID mice [2]

  • Comparison of bone marrow (BM)/spleen transcriptional profiles of ALL xenografts Our previous studies have demonstrated that there are no morphological differences in ALL cells engrafted to the BM or spleen of NOD/SCID mouse xenografts [2]

Read more

Summary

Introduction

Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. The non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). For this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. The non-obese diabetic/severe combined immunodeficient (NOD/SCID) xenograft mouse model is currently one of the most successful models with which to study haematological malignancies such as acute lymphoblastic leukaemia (ALL) [1], whereby patient bone marrow leukaemia cells are directly transplanted into recipient NOD/SCID mice [2]. The kinetics of engraftment reflects the human disease, leading to bone marrow (BM) infiltration, followed by migration to the spleen, peripheral blood and other haematopoietic organs [2,3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call