Abstract

The aim of this study was to examine the abilities of the mesoscale ecohydrological model Soil And Water Integrated Model (SWIM) to simulate discharge, soil moisture, and groundwater dynamics in a small-scale forested catchment. Moreover, the influence of two lateral flow computation techniques on the simulation efficiency was assessed. Generally, the discharges were simulated poorly. Groundwater level was estimated reasonably taking into account that the model was not designed for small-scale catchments. The soil moisture simulation exhibited good correspondence with the observed data in the warmer season (April–August). Both the dynamics and the magnitude were estimated sufficiently well. On the other hand, the colder season does not comply satisfactorily with the modelled data, as the decline of moisture content (in the non-precipitation periods) has no model response. The kinematic storage method was found to be more reliable in the case of a small-scale forested catchment compared to the exponential storage lateral flow estimation approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call