7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/jssc.201900509
Copy DOIJournal: Journal of Separation Science | Publication Date: Jan 15, 2020 |
Citations: 31 |
Pharmaceuticals constitute one of the most important emerging classes of environmental pollutants. A three-phase solvent system of water, water containing 0.1% of formic acid and acetonitrile was successfully used to separate, by liquid chromatography with mass spectrometry (LC-MS), polarity-matched pharmaceuticals, that is, carbamazepine, clarithromycin, and erythromycin, as well as amoxicillin and metformin. Despite of polarity similarities, these pharmaceuticals were completely resolved in the analytical run time of 15 min. The optimized three-phase solvent system based-method was validated for the simultaneous analysis of six matched-polarity pharmaceuticals in wastewater samples. Good linearity (coefficient of determination more than 0.993) and precision (relative standard deviation less than 15.66%) were achieved. Recovery of analytes from the wastewater was between 0.70 and 1.18. Limits of detections ranged from 0.0001 to 0.5114µg/L. No significant matrix effect, evaluated by post extraction addition, was observed in the electrospray ionization (ESI) source. Then, this methodology has been successfully applied to environmental study of pharmaceutical residues occurring in influent and effluent wastewater samples, from the main wastewater treatment plant in Potenza (Basilicata, Southern Italy).
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.