Abstract

Cochlear implants (CIs) are neuroprosthetic devices that can improve hearing in patients with severe-to-profound hearing loss. Postoperatively, a CI device needs to be programmed by an audiologist to determine parameter settings that lead to the best outcomes. Our group has developed an image-guided cochlear implant programming (IGCIP) system to simplify this laborious post-programming procedure and improve hearing outcomes. IGCIP requires image processing techniques to analyze the location of the inserted electrode arrays (EAs) with respect to the intracochlear anatomy (ICA). An active shape model (ASM)-based method is currently in routine use in our IGCIP system for ICA segmentation. Recently, we have proposed a hybrid ASM/deep learning (DL) segmentation method that improves segmentation accuracy. In this work, we first evaluate the effect of this method on so-called distance-vs.-frequency curves (DVFs), which permit to visualize electrode interaction and are used to provide programming guidance. An expert evaluation study is then performed to manually configure the electrodes based on the DVFs and grade the quality of the electrode configurations derived from ASM and hybrid ASM/DL segmentations compared to the one derived from ground truth segmentation. Results we have obtained show that the hybrid ASM/DL segmentation technique tends to generate DVFs with smaller frequency error and distance error, and electrode configurations which are comparable to the existing ASM-based method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.