Abstract

At locations without access to the electrical grid, a flow-through sampler (FTS) collects large volumes of air for the analysis of semi-volatile organic compounds (SVOCs). To test its performance under field conditions, an FTS and a traditional pumped high volume air sampler, both using polyurethane foam (PUF) as sampling medium, were co-deployed at the campus of the University of Toronto Scarborough from August 2006 to June 2007. Polybrominated diphenyl ethers (PBDEs) and various pesticides were quantified in the samples taken by both samplers to test the FTS's applicability to relatively non-volatile and slightly polar SVOCs. Air concentrations in samples taken with the FTS over five 2-week periods compare favourably with the average of the concentrations in several 24-h active high volume samples taken during the same period. In particular, time trends, temperature dependence relationships, and isomer ratios show a reasonable agreement between the two sampling techniques. An empirical linear solvation energy relationship for predicting the apparent theoretical plate number of the PUF assembly used in the FTS illustrates the effect of chemical properties, as well as temperature and wind speed, on sampling efficiency. In the absence of electrical power, the FTS can collect SVOCs from large air volumes as reliably and quantitatively as traditional HiVol samplers, although without separating gas and particle phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.