Abstract

To validate a resuspension model of particulate material (salmonid farm wastes), a UV fluorescent particle tracer was selected with similar settling characteristics. Tracer was introduced to the seabed (water depth ≈30 m) and sediment samples taken on days 0, 3, 10, 17 and 30 to measure the horizontal and vertical distribution of tracer in sediments. A concentric sampling grid was established at radii of 25, 50, 100, 150, 200, 400, 700 and 1, 000 m from the source on transects 30° apart. The bulk of the deployed tracer was initially concentrated in an area 25 m radius from the release point; tracer was observed to steadily decrease to zero over a period of 30 days. In a 200 m region measured from the release point in the direction of the residual current, the redeposition of tracer was low. A Lagrangian particle tracking model was validated using these observed data by varying resuspension model parameters within limits to obtain the best agreement between spatial and temporal distributions. The validated model generally gave good predictions of total mass budgets (±7% of total tracer released), particulary where tracer concentrations were high near the release point. Best fit model parameters (critical erosion shear stress=0.018 N m−2, erodibility constan=60 g m−2 d−1) are at the low end of reported parameters for coastal resuspension models. Such a low critical erosion shear stress indicates that the frequency of resuspension and deposition events for freshly deposited material is high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.