Abstract
Abstract This study examines the capability of a new microwave land data assimilation system (LDAS) for estimating soil moisture in semiarid regions, where soil moisture is very heterogeneous. This system assimilates the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) 6.9- and 18.7-GHz brightness temperatures into a land surface model (LSM), with a radiative transfer model as an observation operator. To reduce errors caused by uncertainties of system parameters, the LDAS uses a dual-pass assimilation algorithm, with a calibration pass to estimate major model parameters from satellite data and an assimilation pass to estimate the near-surface soil moisture. Validation data of soil moisture were collected in a Mongolian semiarid region. Results show that (i) the LDAS-estimated soil moistures are comparable to areal averages of in situ measurements, though the measured soil moistures were highly variable from site to site; (ii) the LSM-simulated soil moistures show less biases when the LSM uses LDAS-calibrated parameter values instead of default parameter values, indicating that the satellite-based calibration does contribute to soil moisture estimations; and (iii) compared to the LSM, the LDAS produces more robust and reliable soil moisture when forcing data become worse. The lower sensitivity of the LDAS output to precipitation is particularly encouraging for applying this system to regions where precipitation data are prone to errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.