Abstract

Slab expansion (SLABEX) tests are conducted to validate a process for calibrating the detonation products equation of state (EOS) of a high explosive (HE). The SLABEX tests use rectangular slabs of PBX 9502, a polymer-bonded HE formulation consisting of 95 wt.% 1,3,5-triamino-2,4,6-trinitrobenzene bound with Kel F-800, a co-polymer of chlorotrifluoroethylene and vinylidene-fluoride. Three PBX 9502 slab thicknesses are examined, each confined symmetrically by two rectangular copper (Cu) plates approximately one-tenth the thickness of the HE slab. For the duration of each experiment, the detonation flow along the central axis of the PBX 9502 slab remains two-dimensional. The lateral flow velocity component of the outer surfaces of the expanding Cu plates is measured, along with the steady axial detonation speed along the central axis of the SLABEX. Hydrodynamic simulations of the Cu plate expansion in the SLABEX geometry, driven by the energy stored in the detonation products by the detonation combustion event, are conducted using a Jones–Wilkins–Lee EOS for the detonation products. This EOS form was recently parameterized for PBX 9502 in the cylinder expansion test geometry using a newly developed calibration technique [Voelkel et al., Combust. Flame 246, 112373 (2022)]. Good agreement between the experiment and prediction is found in each SLABEX test, demonstrating that the detonation product EOS calibration technique produces EOSs that are predictive when applied to other geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call