Abstract

BackgroundPercutaneous left atrial appendage (LAA) closure can be optimised through diligent preprocedural planning. Cardiac computational tomography (CCT) is increasingly recognised as a valuable tool in this process. A CCT-based computational model (FEops HEARTguide™, Belgium) has been developed to simulate the deployment of the two most commonly used LAA closure devices into patient-specific LAA anatomies. ObjectiveThe aim of this study was to validate this computational model based on real-life percutaneous LAA closure procedures and post-procedural CCT imaging. MethodsThirty patients having undergone LAA closure (Amulet™ n = 15, Watchman™ n = 15) and having a pre- and post-procedural CCT-scan were selected for this validation study. Virtually implanted devices were directly compared to actual implants for device frame deformation and LAA wall apposition. ResultsThe coefficient of determination (R2) and the difference in measurements between model and actual device (area, perimeter, minimum diameter, maximum diameter) were ≥0.91 and ≤ 5%, respectively. For both device types, the correlation coefficient between predicted and observed measurements was higher than 0.90. Furthermore, predicted device apposition correlated well with observed leaks based on post-procedural CCT. ConclusionComputational modelling accurately predicts LAA closure device deformation and apposition and may therefore potentiate more accurate LAA closure device sizing and better preprocedural planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.