Abstract

This paper describes the design and validation of the OptiPush Biofeedback System, a commercially available, instrumented wheel system that records handrim biomechanics and provides stroke-by-stroke biofeedback and targeting for 11 propulsion variables. Testing of the system revealed accurate measurement of wheel angle (0.02% error), wheel speed (0.06% error), and handrim loads. The maximum errors in static force and torque measurements were 3.80% and 2.05%, respectively. Measured forces were also found to be highly linear (0.985 < slope < 1.011) and highly correlated to the reference forces (r 2 > .998). Dynamic measurements of planar forces (F x and F y) and axle torque also had low error (−0.96 N to 0.83 N for force and 0.10 Nm to 0.14 Nm for torque) and were highly correlated (r > .986) with expected force and torque values. Overall, the OptiPush Biofeedback System provides accurate measurement of wheel dynamics and handrim biomechanics and may be a useful tool for improving manual wheelchair propulsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.