Abstract

For modeling and simulation of proton exchange membrane (PEM) fuel cell, validation has been an essential and challenging task. This study implements a comprehensive validation including both overall cell performance and local distribution characteristics under different operating conditions with experimental data from two public sources. Polarization curve, cell ohmic resistance, current density distribution and temperature distribution are all involved. A “three dimensional + one dimensional” (“3D+1D”) model is adopted which simplifies part of cell components in order to boost the calculation efficiency. The validation methodology is clarified by listing those undetermined model parameters and analyzing their “accessibility” as well as correlations with the three kinds of voltage losses (activation, ohmic and mass transfer). It is found that the control regions of ohmic voltage loss and concentration voltage loss overlap among a wide current density range, which may lead to misjudgment in the validation process. The details of parameter adjustment are also shared. Simulation results of the two validation tests both obtain decent agreement with the experiments and reflect consistent variation trends as the condition changes. The liquid water in gas channel is proved to have a double effect on cell performance and should be taken into careful consideration especially under low humidification and high current density working conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call