Abstract
Accurate prediction of medical outcomes is important for diagnosis and prognosis. The standard requirement in major medical journals is nowadays that validity outside the development sample needs to be shown. Is such data splitting an example of a waste of resources? In large samples, interest should shift to assessment of heterogeneity in model performance across settings. In small samples, cross-validation and bootstrapping are more efficient approaches. In conclusion, random data splitting should be abolished for validation of prediction models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.