Abstract

BackgroundA hepatocellular carcinoma (HCC) prediction model (ASAP), including age, sex, and the biomarkers alpha-fetoprotein and prothrombin induced by vitamin K absence-II, showed potential clinical value in the early detection of HCC. We validated and updated the model in a real-world cohort and promoted its transferability to daily clinical practice.MethodsThis retrospective cohort analysis included 1012 of the 2479 eligible patients aged 35 years or older undergoing surveillance for HCC. The data were extracted from the electronic medical records. Biomarker values within the test-to-diagnosis interval were used to validate the ASAP model. Due to its unsatisfactory calibration, three logistic regression models were constructed to recalibrate and update the model. Their discrimination, calibration, and clinical utility were compared. The performance statistics of the final updated model at several risk thresholds are presented. The outcomes of 855 non-HCC patients were further assessed during a median of 10.2 months of follow-up. Statistical analyses were performed using packages in R software.ResultsThe ASAP model had superior discriminative performance in the validation cohort [C-statistic = 0.982, (95% confidence interval 0.972–0.992)] but significantly overestimated the risk of HCC (intercept − 3.243 and slope 1.192 in the calibration plot), reducing its clinical usefulness. Recalibration-in-the-large, which exhibited performance comparable to that of the refitted model revision, led to the retention of the excellent discrimination and substantial improvements in the calibration and clinical utility, achieving a sensitivity of 100% at the median prediction probability of the absence of HCC (1.3%). The probability threshold of 1.3% and the incidence of HCC in the cohort (15.5%) were used to stratify the patients into low-, medium-, and high-risk groups. The cumulative HCC incidences in the non-HCC patients significantly differed among the risk groups (log-rank test, p-value < 0.001). The 3-month, 6-month and 18-month cumulative incidences in the low-risk group were 0.6%, 0.9% and 0.9%, respectively.ConclusionsThe ASAP model is an accurate tool for HCC risk estimation that requires recalibration before use in a new region because calibration varies with clinical environments. Additionally, rational risk stratification and risk-based management decision-making, e.g., 3-month follow-up recommendations for targeted individuals, helped improve HCC surveillance, which warrants assessment in larger cohorts.

Highlights

  • A hepatocellular carcinoma (HCC) prediction model (ASAP), including age, sex, and the biomarkers alpha-fetoprotein and prothrombin induced by vitamin K absence-II, showed potential clinical value in the early detection of HCC

  • 1467 individuals were excluded for the following reasons: 18 patients treated with warfarin, vitamin K, vitamin K antagonist, or antibiotics that alter the gut flora; 320 nonHCC cancers; 232 HCC patients treated with antitumor agents; 83 health examiners and 729 patients without cancers or liver diseases; and 85 patients with hepatitis aged under 35 years

  • After excluding 157 confirmed HCC cases, 855 at-risk patients were included in the continued follow-up analysis to compare the outcomes across the different risk groups (Fig. 1)

Read more

Summary

Introduction

A hepatocellular carcinoma (HCC) prediction model (ASAP), including age, sex, and the biomarkers alpha-fetoprotein and prothrombin induced by vitamin K absence-II, showed potential clinical value in the early detection of HCC. Liver cancer is the seventh most common malignant tumor and the second leading cause of death among all cancers worldwide [1]. It is one of the five leading causes of death in the Chinese population, among which hepatocellular carcinoma (HCC) accounts for more than 85–90%. HCC detection is of paramount importance for improving prognosis due to the lack of a specific clinical presentation [2]. Scientific risk-based stratification is a key means of improving the overall survival rate [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call