Abstract

Knowledge of various BC properties in stimulating the methane (CH4) oxidation capacity of landfill cover soil (LCS) is still limited, restricting the optimization of BC performance. To validate key BC properties and seek a feasible way for enhancing BC performance, this study prepared BCs with distinctly varying characteristics through iron (Fe) modification. Then, batch incubation experiments under different CH4 and oxygen concentrations were conducted. Pore volume, cation exchange capacity (CEC), and surface area of BC collectively accounted for 78.5% of the variances in the microbial community structures, with pore volume being the most important factor. These correlated well with the differences in the CH4 oxidation capacities among the different BC-amended LCS. At a low ratio of 15% (v/v) in LCS, BCs' pH not affected their performance but homogeneity could be a limiting factor. Fe modification proved a promising approach to more efficiently improve the three key BC properties (especially pore volume) and thus optimize BC performance than increasing pyrolysis temperature did. Fe-modified BCs encouraged a bacterial consortium (methanotroph, methylotrophs, and nitrogen-fixing bacteria) in the soil with significantly improved CH4 oxidation capacities by up to 26%–74% compared to that of pristine BC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call