Abstract
The design of thermal and energy efficient buildings requires inter alia the investigation of the passive performance, natural ventilation, mechanical ventilation as well as structural and evaporative cooling of the building. Only when these fail to achieve the desired thermal comfort should mechanical cooling systems be considered. Few computer programs have the ability to investigate all these comfort regulating methods at the design stage. The QUICK design program can simulate these options with the exception of mechanical cooling. In this paper, therefore, QUICK's applicability is extended to include the analysis of basic air-conditioning systems. Since the design of these systems is based on indoor loads, it was necessary to validate QUICK's load predictions before extending it. Most thermal analysis programs are not extensively verified. However, in many other disciplines more than 50% of program development time is used for validation purposes. This article addresses validation in general and proposes a procedure to establish the efficiency of a program's load predictions. This proposed procedure is used to compare load predictions by the ASHRAE, CIBSE, CARRIER, CHEETAH, BSIMAC and QUICK methods for 46 case studies involving 36 buildings in various climatic conditions. Although significant differences in the results of the various methods were observed, it is concluded that QUICK can be used with the same confidence as the other methods. It was further shown that load prediction programs usually under-estimate the effect of building mass and therefore over-estimate the peak loads. The details for the 46 case studies are available to other researchers for further verification purposes. With the confidence gained in its load predictions, QUICK was extended to include air-conditioning system analysis. The program was then applied to different case studies. It is shown that system size and energy usage can be reduced by more than 60% by using a combination of passive and mechanical cooling systems as well as different control strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.