Abstract

Abstract. Single-footprint retrievals of carbon monoxide from the Atmospheric Infrared Sounder (AIRS) are evaluated using aircraft in situ observations. The aircraft data are from the HIAPER Pole-to-Pole Observations (HIPPO, 2009–2011), the first three Atmospheric Tomography Mission (ATom, 2016–2017) campaigns, and the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Laboratory (GML) Global Greenhouse Gas Reference Network aircraft program in years 2006–2017. The retrievals are obtained using an optimal estimation approach within the MUlti-SpEctra, MUlti-SpEcies, MUlti-SEnsors (MUSES) algorithm. Retrieval biases and estimated errors are evaluated across a range of latitudes from the subpolar to tropical regions over both ocean and land points. AIRS MUSES CO profiles were compared with HIPPO, ATom, and NOAA GML aircraft observations with a coincidence of 9 h and 50 km to estimate retrieval biases and standard deviations. Comparisons were done for different pressure levels and column averages, latitudes, day, night, land, and ocean observations. We found mean biases of +6.6±4.6 %, +0.6±3.2 %, and -6.1±3.0 % for three representative pressure levels of 750, 510, and 287 hPa, as well as column average mean biases of 1.4±3.6 %. The mean standard deviations for the three representative pressure levels were 15 %, 11 %, and 12 %, and the column average standard deviation was 9 %. Observation errors (theoretical errors) from the retrievals were found to be broadly consistent in magnitude with those estimated empirically from ensembles of satellite aircraft comparisons, but the low values for these observation errors require further investigation. The GML aircraft program comparisons generally had higher standard deviations and biases than the HIPPO and ATom comparisons. Since the GML aircraft flights do not go as high as the HIPPO and ATom flights, results from these GML comparisons are more sensitive to the choice of method for extrapolation of the aircraft profile above the uppermost measurement altitude. The AIRS retrieval performance shows little sensitivity to surface type (land or ocean) or day or night but some sensitivity to latitude. Comparisons to the NOAA GML set spanning the years 2006–2017 show that the AIRS retrievals are able to capture the distinct seasonal cycles but show a high bias of ∼20 % in the lower troposphere during the summer when observed CO mixing ratios are at annual minimum values. The retrieval bias drift was examined over the same years 2006–2017 and found to be small at <0.5 %.

Highlights

  • Carbon monoxide (CO) is produced by the combustion of fossil fuels and biofuels, wildfires and agricultural biomass burning, and hydrocarbon oxidation

  • There were no substantial or consistent differences for the error statics grouped by land vs. ocean and day vs. night, which suggests that these categories can be combined in the error analysis

  • Following Oetjen et al (2014) and Kulawik et al (2021) we evaluated the Atmospheric Infrared Sounder (AIRS) MUSES retrievals by comparing the theoretical error estimates from the MUSES diagnostics to the actual retrieval error statistics described above

Read more

Summary

Introduction

Carbon monoxide (CO) is produced by the combustion of fossil fuels and biofuels, wildfires and agricultural biomass burning, and hydrocarbon oxidation. It is a precursor to tropospheric ozone and carbon dioxide and plays an important role in both atmospheric pollution and climate. CO has a chemical lifetime greater than a week in the troposphere, which allows it to be transported long distances. At the same time the lifetime is short enough that concentrations generally remain spatially inhomogeneous. It is a good tracer species whose uneven distribution can be used to analyze regional-to-global transport processes from pollution sources (e.g., Edwards et al, 2004, 2006; Hegarty et al, 2009, 2010; Petetin et al, 2018; Panagi et al, 2020)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call