Abstract
BackgroundMicroRNAs play vital role in plant growth and development by changeable expression of their target genes with most plant microRNAs having perfect or near-perfect complementarities with their target genes but miRNAs in Citrus sinensis (csi-miRNAs) and their function have not been widely studied.FindingsIn this study, 15 potential microRNAs in Citrus sinensis (csi-miRNAs) were identified and bioinformatically validated using miR-RACE, a newly developed method for determination of miRNAs prediction computationally. The expression of these fifteen C. sinensis miRNAs can be detected in leaves, stems, flowers and fruits of C. sinensis by QRT-PCR with some of them showed tissue-specific expression. Six potential target genes were identified for six csi-miRNAs and also experimentally verified by Poly (A) polymerase -mediated 3′ rapid amplification of cDNA ends (PPM-RACE) and RNA ligase-mediated 5′ rapid amplification of cDNA ends (RLM-RACE) which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that indicate the regulatory function of the miRNAs on their target genes.ConclusionsOur results confirm that small RNA-mediated regulation whereby all csi-miRNAs regulate their target genes by degradation.
Highlights
MicroRNAs play vital role in plant growth and development by changeable expression of their target genes with most plant microRNAs having perfect or near-perfect complementarities with their target genes but miRNAs in Citrus sinensis and their function have not been widely studied
Precise sequence validation of csi-miRNAs In our study we have detected the new 17 csi-miRNAs [7], belonging to be 13 families from C. sinensis genome by computational screening and it is the first time being reported in China
Our result indicated that the expressions of miRNAs and of their target genes are generally negatively correlated
Summary
MicroRNAs (miRNAs) are small, single-stranded, nonprotein coding RNAs of ~21 nt in length, present in plants and animals which regulating the gene expression at the posttranscriptional levels by binding to target mRNAs for mRNA cleavage or inhibition of mRNA translation. miRNA play an important role in the plant kingdom are evolutionarily conserved from mosses and ferns to higher flowering plants. MiRNA play an important role in the plant kingdom are evolutionarily conserved from mosses and ferns to higher flowering plants. This conservation has been used as a powerful strategy for identification or prediction of miRNAs by homology searches in other species [1,2]. Three study groups identified several miRNAs from citrus using computational approaches and deep sequencing [1,3,5,6], but the number of C. sinensis miRNAs predicted still remains low, and experimental validation hardly carried out. The result suggested that the importance of miRNAs in regulating development of C. sinensis and indicate that comprehensive studies of miRNAs in citrus would facilitate further understanding of regulatory mechanisms behind floral induction, stage transition and organ genesis. The new strategy developed here can definitely facilitate ease of studying the mechanisms of miRNA regulation on their target genes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.