Abstract
Traffic congestion costs drivers an average of $1,200 a year in wasted fuel and time, with most travelers becoming less tolerant of unexpected delays. Substantial efforts have been made to account for the impact of non-recurring sources of congestion on travel time reliability. The 6th edition of the Highway Capacity Manual (HCM) provides a structured guidance on a step-by-step analysis to estimate reliability performance measures on freeway facilities. However, practical implementation of these methods poses its own challenges. Performing these analyses requires assimilation of data scattered in different platforms, and this assimilation is complicated further by the fact that data and data platforms differ from state to state. This paper focuses on practical calibration and validation methods of the core and reliability analyses described in the HCM. The main objective is to provide HCM users with guidance on collecting data for freeway reliability analysis as well as validating the reliability performance measures predictions of the HCM methodology. A real-world case study on three routes on Interstate 40 in the Raleigh-Durham area in North Carolina is used to describe the steps required for conducting this analysis. The travel time index (TTI) distribution, reported by the HCM models, was found to match those from probe-based travel time data closely up to the 80th percentile values. However, because of a mismatch between the actual and HCM estimated incident allocation patterns both spatially and temporally, and the fact that traffic demands in the HCM methods are by default insensitive to the occurrence of major incidents, the HCM approach tended to generate larger travel time values in the upper regions of the travel time distribution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.