Abstract
ObjectivesWe previously developed a historical reconstruction model to estimate exposure to airborne polycyclic aromatic hydrocarbons (PAHs) from traffic back to 1960 for use in case–control studies of breast cancer risk. Here we report the results of four exercises to validate and calibrate the model.MethodsModel predictions of benzo[a]pyrene (BaP) concentration in soil and carpet dust were tested against measurements collected at subjects’ homes at interview. In addition, predictions of air intake of BaP were compared with blood PAH–DNA adducts. These same soil, carpet, and blood measurements were used for model optimization. In a separate test of the meteorological dispersion part of the model, predictions of hourly concentrations of carbon monoxide from traffic were compared with data collected at a U.S. Environmental Protection Agency monitoring station.ResultsThe data for soil, PAH–DNA adducts, and carbon monoxide concentrations were all consistent with model predictions. The carpet dust data were inconsistent, suggesting possible spatial confounding with PAH-containing contamination tracked in from outdoors or unmodeled cooking sources. BaP was found proportional to other PAHs in our soil and dust data, making it reasonable to use BaP historical data as a surrogate for other PAHs. Road intersections contributed 40–80% of both total emissions and average exposures, suggesting that the repertoire of simple markers of exposure, such as traffic counts and/or distance to nearest road, needs to be expanded to include distance to nearest intersection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Health Perspectives
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.