Abstract

Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call