Abstract

Numerical results for an internal ribbed cooling channel including a 180° bend with a 2:1 inlet and 1:1 aspect ratio outlet channel were validated against experimental results in terms of spatially resolved heat transfer distributions, pressure losses, and velocity distributions. The numerical domain consisted of one rib segment in the inlet channel and three ribs segments in the outlet channel to reduce the overall numerical effort and allow for an extensive parametric study. The results showed good agreement for both heat transfer magnitudes and spatial distributions and the numerical results captured the predominate flow physics resulting from the 180° bend. The production of Dean vortices and acceleration of the flow in the bend produced strongly increased heat transfer on both the ribbed and unribbed walls in the outlet channel in addition to increases due to the ribs. Numerical simulations were performed for a wide range of divider wall-to-tip wall distances, which influenced the position of the highest heat transfer levels on the outlet walls and changed the shape of the heat transfer distribution on the tip wall. Analysis of section averages of heat transfer in the bend and outlet channel showed a strong influence of the tip wall distance while no effect was seen upstream of the bend. A similarly large effect on pressure losses in the bend was observed with varying tip wall position. Trends in averaged heat transfer varied linearly with tip wall distance while pressure losses followed a non-linear trend, resulting in an optimum tip wall distance with respect to heat transfer efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.